Welcome to Inanot.com where you will tons of information concerning Nanotechnology and other related disciples! Nanotechnology comprises any technological developments on the nanometer scale, usually 0.1-100nm. (One nanometer equals one thousandth of a micrometer or one millionth of a millimeter.) The term sometimes applies to any microscopic technology. The size scale of nanotechnology yields to quantum-based phenomena, which yields often counterintuitive results. These nanoscale phenomena include quantum size effects and molecular forces such as van der Waals forces. Furthermore, the vastly increased ratio of surface area to volume opens new possibilites in surface-based science, such as catalysis.

The device density of modern computer compoents (i.e. the number of transistors per unit area) continues to grow exponentially, but fundamental electronic limitations prevent the trend of Moore's law to continue. Current estimates predict ten to fifteen years of continued improvement before economic costs grow exponentially. Nanotechnology is seen as the next logical step for continued advances in computational architecture.

The term nanotechnology is often used interchangeably with molecular nanotechnology (also known as "MNT"), a hypothetical advanced form of nanotechnology that is believed will be developed far into the future, although estimates vary. The term nanoscience is used to describe the interdicplinary field of science devoted to the advancement of nanotechnology.


Need Help Finding Your Subject?

  • Nanotechnology Topics consist of information concerning Molecular Engineering, Genetic Engineering, Weapons of Mass Destruction, and much more.
  • Materials section handles information containging devices and technology used such as the Scanning Probe Microscope.
  • Potential Risks consist of risks that have been found in the study of Nanotechnolgy.
  • Important People consists of detailed information about a few contributors to Nanotechnology.

Focus on Electronics Topics: Nanotubes

Carbon nanotubes are cylindrical carbon molecules with novel properties that make them potentially useful in a wide variety of applications (e.g., nano-electronics, optics, materials applications, etc.). They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. Inorganic nanotubes have also been synthesized.


A nanotube (also known as a buckytube) is a member of the fullerene structural family, which also includes buckyballs. Whereas buckyballs are spherical in shape, a nanotube is cylindrical, with at least one end typically capped with a hemisphere of the buckyball structure. Their name is derived from their size, since the diameter of a nanotube is on the order of a few nanometers (approximately 50,000 times smaller than the width of a human hair), while they can be up to several centimeters in length. There are two main types of nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).

Nanotubes are composed entirely of sp² bonds, similar to graphite. Stronger than the sp³ bonds found in diamond, this bonding structure provides them with their unique strength. Nanotubes naturally align themselves into "ropes" held together by Van der Waals forces. Under high pressure, nanotubes can merge together, trading some sp² bonds for sp³ bonds, giving great possibility for producing strong, unlimited-length wires through high-pressure nanotube linking.


While it has long been known that carbon fibers can be produced with a carbon arc, and patents were issued for the process, it was not until 1991 that Sumio Iijima, a researcher with the NEC Laboratory in Tsukuba, Japan, observed that these fibers were hollow. This feature of nanotubes is of great interest to physicists because it permits experiments in one-dimensional quantum physics.

 

Blades of grass inspire advance in organic solar cells.

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, a research team has taken a major step in developing long-sought polymer architecture to boost power-conversion efficiency of light to electricityA breakthrough in morphology control should have widespread use in solar cells, batteries and vertical transistors.

]]> inanot.com